Features

- External mounted rodless cylinder
- Rodless cylinder for short overall length
- 1.250 dia. case hardened \& ground shafts
- 4 linear ball bearings and seals for extended cycle life
- Tapped \& dowel pin holes in anodized body for ease of mounting
- Tapped \& dowel pin holes in anodized end plates for ease of mounting
- Hardened adjustable stopscrews for accurate and repeatable positioning available
- Hydraulic shock absorbers available
- End of stroke sensing switches are available for stopscrews (see page 143-149)
- Mulitple air connections

Dimensions

NOTE: Flow controls are recommended for all applications.

Technical Data

- Bore = 1.5"
- Force @ 80 psi = 140 lbs
- Operating medium = compressed air 60-100 psi
- Air connection = 1/4 NPT
- Repeat accuracy $=+/-0.0005{ }^{\prime \prime}$
- Life expectancy $=>100$ million travel inches
- Force diagrams below depict the load and the resultant deflection caused by that force (or torque).

For T4 = T;
If T4 $=\mathrm{F}^{\star}(\mathrm{z}+2.25)$ and $\mathrm{T}=\mathrm{F} 3^{\star} 2.25 / \mathrm{X}$ then,
$\mathrm{F} 4=\mathrm{F} 3^{*} 2.25 /\left(X^{*}(\mathrm{z}+2.25)\right)$
F4 is the force that will cause a deflection $\left(y_{T}\right)$ at the block's edge. To determine the deflection at the cantilever end use the following:
$y_{4}=F 4^{\star} z^{3} /(9.78 \mathrm{E}+07)$

Load Factor (x)

The load factor (X) is used in calculations as a relationship between a load on the ends (F1) versus a load in the center (F3).

F3 Load vs. Travel at set Deflection
$\left(y_{3}\right)$ for the ES-4

Ordering \& Options

For end of stroke sensing, see page 143-149

